

Second South East European Regional CIGRE Conference SEERC

Kyiv, Ukraine, 12-13 June 2018

2-103

Icing Forecasting on Overhead Lines and Development of Early Warning System, a Real Case Study in Turkey

Doruk GUNES	Assoc. Prof. Bora ALBOYACI	Hasan YILMAZ	Erman TERCIYANLI
GENETEK Güç, Enerji Ltd. Şti.	Kocaeli University, Engineering Faculty, Electrical Engineering	ÇORUH Electricity Distribution Company	T4E Technology For Efficiency Ltd. Şti.
TURKEY	Department		
		TURKEY	TURKEY
	TURKEY		

Problem Definition

Originality

Icing Conditions on Overhead Lines

Various factors that occur icing on the overhead lines are as follows:

<u>Temperature</u>: Icing events occur most between + 2°C and -8°C. However, if it is too cold (below -8°C), icing won't occur.

In addition, the amount and types of the precipitation affect the formation of ice.

City	Min. Temperature of Months(^o C)					
	November	December	January	February	March	April
Trabzon	-1.6	-3.1	-7	-6.1	-5	-2
Rize	-4.8	-4	-6.5	-6.6	-7	-2.8
Giresun	-4.7	-2.4	-6.2	-9.8	-4	1.4
Artvin	-8.2	-10.8	-16.1	-11.9	-9.8	-7.1
Gümüşhane	-15	-21	-23.6	-25.7	-22.6	-11

Icing Conditions on Overhead Lines

Humidity: The relative humidity should be over 90% for the occurrence of icing.

Humidity rate decreases with the temperature drop. In this case, both the icing occurs and thickness of sheet increases over time.

HOPA

TOATUM

SEERC Second South East European Regional CIGRE Conference – Kyiv, 12-13 June 2018

Icing Conditions on Overhead Lines

<u>Wind</u>: The wind causes water vapor and fog particle accumulates on conductor surface. It's important the speed of the wind with its direction for icing.

Topography conditions: The topography and the elevation from sea level affect the icing. The most crucial thing to pay attention is that lines should pass through the land where the slow wind blows

Solar radiation: It affects the heating of the conductor depending on the angle of the sun's rays.

Methods to Prevent Icing Risk

Methods to Prevent Icing Risk

Methods to Prevent Icing Risk

Network Analysis

Network Analysis

Network Analysis

Network Analysis (Operating Reactor)

Active and Reactive Power Values of Feeder-1 (Case-1)

Active and reactive power values for Cabinet-2 incoming feeder (Case-1)

		Present	Current	Case-1
Date	Timo	Feeder	Value to	Feeder
	11110	Current	Prevent	Current
		(A)	Icing (A)	(A)
3.3.2016	19:00-20:00	32.21	42.91	92.68
3.3.2016	20:00-21:00	12.22	47.31	87.62
3.3.2016	21:00-22:00	14.71	61.54	88.05
3.3.2016	22:00-23:00	1.82	69.84	86.69
3.3.2016	23:00-00:00	11.63	83.93	87.53
4.3.2016	00:00-01:00	27.23	81.58	91.06
4.3.2016	01:00-02:00	28.39	79.16	91.61
4.3.2016	02:00-03:00	27.23	79.16	91.06
4.3.2016	20:00-21:00	26.71	80.58	90.82
4.3.2016	21:00-22:00	23.74	87.74	89.99
11.3.2016	21:00-22:00	25.42	76.95	90.49
11.3.2016	22:00-23:00	25.54	78.88	90.53
11.3.2016	23:00-00:00	25.42	82.69	90.45

Network Analysis (Feeder-3 Shifting)

Active and Reactive Power Values of Feeder-1 (Case-2)

Meteorologic Observation Station

Meteorologic Forecast Data

Structure

Background Algorithm

Background Algorithm

Background Algorithm

Output of Algorithm

e

Developed Software

Developed Software

We are gratefully acknowledge EPDK (Republic of Turkey Energy Market Regulatory Authority) and ÇORUH EDAŞ for their support.

THANK YOU FOR LISTENING !

